
Dr. Syed Asim Jalal
Department of Computer Science

University of Peshawar

Data Structures and Algorithm Analysis

3

Linked List

Introduction to Linked Lists

2

Limitations of Arrays as Lists
 We have seen implementation of a list by Array. It is a

property of an array that its elements are placed
consecutively in memory.

 There may not be enough continuous memory locations to
accommodate entire Array. Even if there are more free
memory locations scattered throughout memory in the form
of small free blocks.

 Once we declare size of Array, it is not possible to increase
or decrease it during the execution of the program. If we
need more elements to store in the Array, there is need of
changing its size in the declaration.

3

Usually the number of items to be placed in
any list is not known in advance in most
cases.

 If Array is used to implement a List, it could
result in wastage of memory, if the entire
array space is not consumed.

4

 In order to overcome these shortcomings of a
Arrays as a List we need an implementation of a
List that

• would not require static list size and
• the memory is not reserved from the start. That is,

the memory is dynamically assigned as the need
arises.

• Furthermore, it would not require continuous large
free memory block to store list and will be able to use
scattered smaller free memory blocks.

 Linked List implementation of a List is one such
example.

5

Linked List
 Linked List is an implementation of a list using

linked memory.

 Linked List overcomes the limitations of Array
based list implementation.

 A linked list is a dynamic data structure that grows
and shrinks without any limitation on size (except
total memory space)

6

 Linked List is a linear collection of data elements.

 Each data element in a Linked List is called a
Node.

 The Linear order is not implemented by continuous
memory locations but through pointers linking data
elements. The next element to a node may be
stored anywhere in the memory. Linked List
keep track of next element’s location.

7

 To create a linked list, at first, we define structure of
individual elements or the node.
 Each node is divided into two parts.

– Information Part
– Link Field or Next Pointer

 The Information part can again consist of many
data items.
 The Next or Link pointer field holds the starting

location of the next node.

8

 Different nodes may occur at different locations in
main memory, depending on where the operating
system assigned memory, but the Next part of
each node always contain the address of the next
node. Thus it forms a chain of nodes which we call
a Linked List.

NULL

info next info nextinfo next

first

node node node 9

 The Next pointer in Last Node
– If there is no next node, that is, the node is the

last node, then the next part has Null Pointer,
which points to nothing.

 The Start pointer
– In Linked List we always have a START pointer

that always points to First Node.
– We also call it Head Pointer
– It has address of the first node of a Linked List.
– Without Start or Head pointer, it will not be

possible to know the starting position of a list.

10

11

12

Linked List in memory: scattered nodes

1063

13

Advantages of Linked List
1. Linked list are dynamic data structures. That is, they can

grow or shrink during the execution of a program.

2. Efficient memory utilization: In linked list (or dynamic)
representation, memory is not pre-allocated. Memory is
allocated whenever it is required. And it is de-allocated (or
removed) when it is not needed.

3. Insertion and deletion in middle of a List are efficient. Linked
list provides flexibility in inserting a data item at a specified
position and deletion of a data item from the given position.

4. Many complex applications can be easily carried out with
linked list.

14

Disadvantages of Linked List
1. Memory overhead.

– to store an integer number, a node with integer
data and address field is allocated. That is more
memory space is needed.

– It is called overhead memory.

2. Access to an arbitrary data item is little bit
cumbersome and also time consuming.
– As readily available indexes like arrays are not

available. We have to traverse list to access
desired node.

15

Implementation of Node

struct node
{

int info;
node * next;

};
struct node *first;

info next

A Node

info next

node

first

16

Operations on Linked List
 Creation of Linked List

 Insertion of an element

 Deletion of an element

 Traversing all elements

 Searching for data

17

Creation operation is used to create a
linked list.

Usually it means creating the first node.

Once a linked list is created with one node,
insert operation can be used to add more
elements in a linked list.

Here, creating a Node means allocating
memory and returning its memory address to
be stored Start pointer.

18

 Insertion operation is used to insert a new
node at any specified location in a linked list.

 A new node may be inserted.

– (a) At the beginning of the linked list
– (b) At the end of the linked list
– (c) At any other specified position

19

 Deletion operation is used to delete an item (or
node) from a linked list.

 A node may be deleted from the

– (a) Beginning of a linked list
– (b) End of a linked list
– (c) Specified location of the linked list

20

 Traversing is the process of going through all
the nodes from one end to another end of a
linked list.

 In a singly linked list we can visit from left to
right only, or forward traversing. In a doubly
linked list forward and backward traversing both
are is possible.

 Singly and doubly linked lists are two types of
Linked Lists

21

TYPES OF LINKED LIST
 1. Singly linked list

 2. Doubly linked list

 3. Circular linked list

22

Operations
on
Singly Linked
List

23

Graphical
representation of
FIVE steps involved in
Inserting node at the
front of a linked list.

Figures:
a, b, c, d, e, and f

24

Insert a Node at the Beginning & Create
Linked List
 Suppose START pointer contains address of first node in

the Linked List. INFO is the information part of a Node. And
DATA be the information being entered.

1. Input DATA to be inserted
2. Create a new linked list node and save address in
“NewNode” pointer
3. NewNode → INFO = DATA
4. If (START equals to NULL)

(a) Set NewNode→Link = NULL
5. Else

(a) Set NewNode →Link = START
6. START = NewNode
7. Exit 25

Insert a Node at the end of Linked List

1. Input DATA to be inserted
2. Create a new node, save address in NewNode
3. Set NewNode →INFO= DATA
4. Set NewNode →Next = NULL

5. If START contains NULL // linked list is empty
(a)START = NewNode

6. else
(a)TEMP_Ptr = START
(b) While (TEMP_Ptr→Next not equal to NULL)

(i) TEMP_Ptr = TEMP_Ptr →Next
(c) TEMP_Ptr→Next = NewNode

8. Exit

Suppose START points to the first node in a linked list.
INFO is the information part of a Node. And DATA be the information being
entered.

26

	Slide Number 1
	Linked List
	Limitations of Arrays as Lists
	Slide Number 4
	Slide Number 5
	Linked List
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Linked List in memory: scattered nodes
	Advantages of Linked List
	Disadvantages of Linked List
	Implementation of Node
	Operations on Linked List
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	TYPES OF LINKED LIST
	Operations�on�Singly Linked List
	Slide Number 24
	Insert a Node at the Beginning & Create Linked List
	Insert a Node at the end of Linked List

